
INV ITED
P A P E R

FPGA Security: Motivations,
Features, and Applications
This paper discusses all aspects of FPGA security and trust.

By Stephen M. Trimberger, Fellow IEEE, and Jason J. Moore

ABSTRACT | Since their inception, field-programmable gate

arrays (FPGAs) have grown in capacity and complexity so that

now FPGAs include millions of gates of logic, megabytes of

memory, high-speed transceivers, analog interfaces, and whole

multicore processors. Applications running in the FPGA include

communications infrastructure, digital cinema, sensitive data-

base access, critical industrial control, and high-performance

signal processing. As the value of the applications and the data

they handle have grown, so has the need to protect those

applications and data. Motivated by specific threats, this paper

describes FPGA security primitives from multiple FPGA ven-

dors and gives examples of those primitives in use in

applications.

KEYWORDS | Anti-tamper (AT); authentication; encryption;

field-programmable gate arrays (FPGAs); information assur-

ance; physically uncloneable function (PUF); system on chip

(SoC); trust

I . INTRODUCTION

A. FPGAs and Programming Technology
A field-programmable gate array (FPGA) is a semicon-

ductor device that can be programmed after manufacture

to perform a specific application design, typically specified

as a digital logic system [43]. A taxonomy of FPGAs com-

monly starts with the program storage technology (Fig. 1).

SRAM-programmed FPGAs store their configuration

data in internal volatile memory cells distributed through-

out the device. These are generally not SRAM cells, but are

more similar to static latch cells [43]. Xilinx’s 7-Series and
Altera’s Stratix-5 are examples of popular SRAM-based

FPGAs. A recognized disadvantage of SRAM programming

stems from its volatility. When power is removed, the
programming is lost, so an SRAM FPGA requires an exter-

nal nonvolatile memory for permanent storage of the ap-

plication program. When power is applied, the SRAM

FPGA loads its programming bitstream from that external

storage. Besides requiring a second device, the transmis-

sion of the program from the nonvolatile external memory

to the SRAM FPGA may expose the programming to a

potential adversary. The volatility of data may also be used
as a positive security feature, enabling the SRAM FPGA to

clear all programming if it is tampered [48].

In contrast, flash memory programmable logic devices,

such as traditional complex programmable logic devices

(CPLDs), the Microsemi Corporation (Aliso Viejo, CA, USA)

SmartFusion2, and Lattice Semiconductor (Hillsboro, OR,

USA) ispXPGA [1], [21], are nonvolatile and use internal flash

memory to hold the programming. While the internal flash
memory eliminates the need for an external nonvolatile storage

device and the consequent exposure of the programming to

potential adversaries, systems employing flash FPGAs com-

monly require in-system programming (ISP) of the FPGA. ISP

exposes the programming of the FPGA to the same security

concerns as SRAM FPGAs. The availability of reprogrammable

flash provides FPGA manufacturers with the ability to build

applications that ‘‘remember’’ information through power
cyclesVuseful in cryptographic applications such as tamper

logging and key revocation. Flash devices can also be erased

upon command to eliminate the design when needed.

Antifuse FPGAs, such as the Microsemi Axcelerator,

use a one-time programmable structure to form

Manuscript received September 14, 2013; revised May 16, 2014; accepted June 11, 2014.

Date of publication July 8, 2014; date of current version July 18, 2014.

S. M. Trimberger is with Xilinx, San Jose, CA 95124 USA (e-mail:

steve.trimberger@xilinx.com).

J. J. Moore is with Xilinx, Albuquerque, NM 87109 USA.

Digital Object Identifier: 10.1109/JPROC.2014.2331672

Fig. 1. FPGA taxonomy.

0018-9219 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1248 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

nonvolatile links between internal nodes [2], [25], [26].
An antifuse, commonly built as a programmable via be-

tween metal layers, is disconnected at manufacture. A

high-voltage pulse programs the fuse, causing it to form a

low-resistance connection between the internal nodes.

Antifuses are nonvolatile, but one-time programmable.

Once programmed, an antifuse FPGA cannot be changed

or reprogrammed. Because there is no need for external

configuration storage, the confidentiality and authentica-
tion of configuration data is more easily maintained. ISP is

not possible. However, because the program cannot be

erased from the device, additional system-level security

concerns may remain.

B. Why SRAM?
By far, the most common FPGAs, even in security-

conscious applications, are those programmed with SRAM.
If SRAM programming exposes sensitive data to adversar-

ies, why would anyone use them? The popularity of SRAM

programming technology derives from the simplicity of its

manufacture: SRAM FPGAs require only transistors and

wires to realize the interconnect, configuration memory

cells and switches of the generic device. Therefore, SRAM

FPGAs take advantage of new process nodes earlier than

other FPGAs [47], which may be two process generations
ahead of other technologies. This process advantage results

in higher performance, greater logic density, and improved

power efficiency for SRAM FPGAs. SRAM programming

also simplifies manufacturing test, where the SRAM FPGA

is typically programmed many times to perform self-tests.

In addition, SRAM FPGA applications can be easily up-

dated in the field in much the same way software is

updated.
When used with strong bitstream security features, in-

cluding those described in this paper, the security of

SRAM FPGAs is on par with the security of nonvolatile

internal storage of the bitstream. Therefore, despite the

greater perceived security of antifuse and flash FPGAs,

SRAM FPGAs are deployed in many security-conscious

applications.

C. The FPGA Design Lifecycle
The FPGA lifecycle includes two design flows: the base

array design and the application design (Fig. 2). Security

must be maintained through both [44]. The base array

design is a standard integrated circuit development flow

controlled by the FPGA manufacturer. The base array is

designed using commercial design tools and libraries,

manufactured at a foundry and tested. It is then typically
sent to another facility for packaging and final test. The

resulting base array is shipped to a customer or authorized

distributor. The base array design is subject to all the sup-

ply chain trust and security concerns as any other integ-

rated circuit, including questions about tampering with

tools, supply-chain control, and reverse engineering. Large

FPGA manufacturers maintain a close watch on their

supply chain, tracking every manufactured device through

to final customer delivery or destruction. As the security

issues associated with the design and manufacture of the

base array are no different than those of other semicon-

ductor devices, this paper does not focus on the base array

design and manufacture, but instead focuses on the secu-

rity concerns that arise from the need to protect the appli-
cation design.

The application design also has a design phase, typically

performed with FPGA vendors’ tools, often augmented

with commercial EDA tools. The application developer in-

tegrates design information or intellectual property (IP)

from a number of sources into an FPGA application: ori-

ginal and reused hardware description language (HDL)

code, libraries from the FPGA vendor and other parties and
software for soft and hard microprocessors. The FPGA

vendor’s tools compile the application design into a bit-

stream, the programming of the FPGA base array to realize

the application function. As with any design process, the

design itself can be carried out in a secure location. Protec-

tion of IP during the design phase is no different for FPGAs

than it is for ASICs or microprocessors. Therefore, this

paper does not address design-phase security.
A nonvolatile FPGA, such as a flash or antifuse FPGA,

may be programmed before it is shipped. An SRAM FPGA

is typically shipped with a separate nonvolatile memory

containing the programming, and when power is applied,

the FPGA loads its programming from the nonvolatile

memory.

D. This Paper
This paper begins by focusing on those FPGA aspects

that impact security, both positively and negatively. It

summarizes the common threat vectors and then intro-
duces some early FPGA security strategies. The remainder

of the paper focuses on modern FPGA security as it relates

to two of the primary security domains: information

assurance (IA) and anti-tamper (AT). In each domain, the

presentation describes the techniques that are currently

deployed, introducing them broadly, then using specific

threats to motivate additional detail. The various FPGA

Fig. 2. FPGA lifecycle flows. (Left) Generic integrated circuit flow for

the base array. (Right) Application design and deployment flow.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1249

vendors have chosen solutions to these threats that are
similar, yet they differ in detail. In this paper, we attempt

to describe the major security solutions deployed by large

FPGA vendors, outlining major distinctions while omitting

minor differences. Since FPGA security is continually

changing, newer FPGAs may well deploy different

mechanisms.

Following the discussion of security features is a sec-

tion showing applications using those features to achieve
security goals. This paper concludes with a short discus-

sion of the future of FPGA security capabilities.

II . FPGA SECURITY INTRODUCTION

A. Unique Aspects of FPGA Security
FPGA programming bitstreams are qualitatively much

like microprocessor software. They are susceptible to all

the same security concerns that surround software, includ-

ing unauthorized copy, theft of IP embodied in the FPGA

application program, and tampering to introduce malware

[9], [46]. FPGA programming is present in the system in

the field, whether programmed directly in antifuses, flash

memory cells, or in an external nonvolatile memory. If an

adversary can recover the programming by reading the
internal memory, intercepting the programming bit-

stream, or reverse-engineering programmed fuses from a

decapped device, then the application can be duplicated

and reverse engineered. SRAM FPGAs, in particular, have

been criticized over this concern [2], although Flash-based

FPGAs have the same susceptibility if in system repro-

grammability is required.

On the other hand, the application developer does not
reveal the application design to FPGA vendors or their

suppliers. Because the FPGA base array is manufactured

without knowledge of the end application, there is no

chance of IP theft or tampering of an application design

during manufacture and test of the FPGA base array. Since

all FPGA devices are manufactured identically and sold

into a variety of applications, an adversary cannot discover

any application-dependent information by attacking the
FPGA vendor’s supply chain.

Further, since the programming is not done with me-

tallization as is the case with ASIC devices, traditional

reverse engineering, where the mask layers are recognized

from a decapped device, does not work. Such reverse

engineering may yield the application-independent base

array, but not the application implemented on it.

B. Environment and the Cost of Security
FPGA security is complicated by the environment in

which the FPGA is expected to perform. The design of

FPGA security features assumes no physical barrier and no

communication network: the FPGA may be in the hands of

an adversary with no trusted party available. This envi-

ronmental assumption distinguishes FPGA security from

internet security, where servers may physically reside in a
trusted environment and those servers can verify identity

through name servers with which they are in communi-

cation. In FPGA security design, it is assumed that the

adversary has physical access to the device and may mount

any electrical, physical, side channel, or replay attack. The

rationale is straightforward: if the adversary does not have

such access, then the containing system could ensure the

security of the FPGA by controlling all access to the FPGA.
In this case, built-in FPGA security would be redundant.

Although military systems may employ physical secu-

rity, the cost of ‘‘guns, gates, and guards’’ is impractical in

commercial systems. The adversary is assumed to have an

economic motive, such as theft of IP. Therefore, the secu-

rity applied in the commercial domain is an economic

concern where the cost of security measures is balanced

against the value of the information being protected. FPGA
security is designed to make the cost of breaking the

security greater than the adversary’s expected economic

gain. This decision is ultimately in the hands of the

application developer, not the FPGA manufacturer.

As FPGAs have become larger and more capable, the

value of the IP of the application designs has grown, moti-

vating significant investment in built-in security functions.

Further, the value of the data handled by the FPGA has also
increased significantly, including such information as

decrypted digital cinema and personal-data databases. As

a result, today we find FPGAs deployed in a security-

hostile environment, protecting data of great commercial

value.

III . THREATS

An adversary may attack the IP of the application design

itself, the data stored in the application or the system of

which the FPGA is a part. Each type of data has different

value. Each attack requires different security features to

defend. The attacks of major concern to FPGA vendors can

be divided into categories.

A. Cloning/Overbuilding
In cloning, an adversary copies the FPGA program-

ming, then uses it in an identical device, selling it as his

own. In overbuilding, an adversary such as a contract

manufacturer builds additional systems, inserting the legi-

timate bitstream into those systems and selling them

without the designer’s approval. Cloning may apply to an

entire design or may apply to a subset of the design, for

example, purchased cores that may be restricted by the
seller. In both cases, the adversary does not require de-

tailed knowledge of the design.

B. Reverse Engineering
An adversary may reverse engineer the bitstream to

recover the circuit design that it implements. This may be

done to understand and duplicate the functionality of that

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

1250 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

application, but may also be used as part of an attack on
other aspects of the system. Reverse engineering may be

used to tamper with the application to insert malware.

Historically, reverse engineering an FPGA bitstream, like

decompiling software, has been considered possible,

though tedious and nontrivial. Reverse engineering of

FPGA bitstreams is further complicated because FPGA

vendors do not have a standardized bitstream. As a result,

every new FPGA device requires a new bitstream reverse-
engineering effort.

A more insidious problem is dealing with the size of the

application. Although reverse engineering may divulge the

netlist of the application, transforming a multimillion gate

netlist into an understandable design that can be modified

is problematic. The complexity of the application increases

its value, making theft attractive, but the consequent size

makes theft difficult.
Regardless, researchers have periodically reported the

ability to reverse engineer unencrypted bitstreams. It

would seem imprudent to rely on the tedium of bitstream

reverse engineering to protect valuable IP.

C. Tampering
In tampering, an adversary modifies an application

design. Tampering may be employed to add logic that
leaks information from an application or tampering may

disable parts of the application, potentially defeating other

security measures. For the former, tampering must control

the application to set values in the bitstream, so reverse

engineering may also be required. However, for the latter,

merely scrambling parts of the bitstream may be

sufficient.

D. Spoofing
In spoofing, an adversary replaces the FPGA bitstream

with his own. That bitstream may or may not include

components derived from cloning or reverse engineering.

A spoofed application may compromise the system in

which it operates.

E. Denial of Service, Destruction of the FPGA,
and Substitution

Since it is assumed that the FPGA is in the hands of an

adversary, denial of service and malicious destruction of

the FPGA device are somewhat irrelevant. Rather than

mount a clever attack on the design to prevent the system

from operating, an adversary could simply smash the FPGA

with a hammer. Conversely, if a system requires an FPGA

containing a unique key, an adversary may choose to
circumvent security measures by replacing the FPGA in a

system with another identically manufactured device from

the FPGA vendor without the key or with his own key. In

many cases, this substitution is simpler than attempting to

break the FPGA device security. Since these physical at-

tacks are so simple, FPGAs typically do not defend against

these types of threats.

IV. HISTORICAL FPGA SECURITY

Early FPGAs contained very little logic, and by inference

that logic had low value. Therefore, when they were in-
troduced, FPGAs provided only rudimentary protection

against threats.

FPGA manufacturers did not release the coding of their

bitstreams, though they did release a considerable amount

of information about the bitstream in tools and documen-

tation [50]. They considered the task of reverse engineering

the bitstream to be more expensive than the task of re-

creating the design by black-box observation of its operation.

A. Readback
From their inception, FPGAs of all types included a

readback mechanism, whereby the program and data in the

device can be read out for test purposes. To prevent un-

authorized copy, early FPGAs followed the features of

programmable logic devices (PLDs) and included a prog-

ramming bit to disable the readback mechanism. This

method worked well for antifuse and flash-based FPGAs,

where the program could be loaded at a secure location,
but SRAM FPGAs still needed to load the bitstream in the

field, while potentially in the hands of an adversary.

Preventing readback gave little protection if the bitstream

could be intercepted as it was loaded into the FPGA. For

this reason, antifuse FPGAs, that did not expose the

programming in the system, gained an early reputation for

being a more secure FPGA technology.

It is important to note that the readback function has,
and continues to be, a valuable feature for both the FPGA

manufacturer and the user. Whether the manufacturer

uses it for device test, or the user employs readback for in-

system data integrity checks, it is a feature, much like

JTAG, that is useful but needs to be adequately protected to

avoid vulnerabilities.

Readback continues to be a concern, and as late as

2012, Skorobogatov and Woods [38] discovered a keyed
back-door/test mechanism that enabled the readback fea-

ture of a Microsemi antifuse FPGA that was assumed to be

protected by the FuseLock protection mechanism [27].

B. Early Bitstream Protections for SRAM FPGAs
Before bitstream encryption, two methods were used

to protect SRAM bitstreams. The first method was to load

the FPGA at a secure location and use a battery to hold

the configuration bitstream for the entire lifetime of the

fielded system [3]. Since programmable logic devices had

privacy settings to prevent readback of the program, and
since the bitstream was never exposed outside the device,

this method assured that the bitstream running inside the

FPGA is both secure and unmodified. This is precisely the

same level of security achieved by antifuse and other

nonvolatile FPGAs. The drawback of this method is, of

course, the requirement that the system be powered

continually. As FPGAs grew larger and more complex, this

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1251

solution became impractical due to increased standby
power requirements.

The second solution was to use an external memory

with a unique identifier, and customize the FPGA program

to require that identifier, essentially tying the FPGA appli-

cation bitstream to a unique board-level identifier. An im-

provement to the simple test of the board-level identifier

uses an external keyed device that is queried with a ran-

dom number generated by the FPGA [6]. This solution
defeats simple cloning because the bitstream only func-

tions correctly in the system with the correct external

identifier device. However, the bitstream for each system

is unique, which complicates the manufacturing process.

Further, the design can be copied by an adversary who

reverse engineers the bitstream, identifies the check logic,

and rebuilds the application with the check removed.

This solution increases the difficulty and cost of copy-
ing the design but still relies on the difficulty of reverse

engineering the bitstream as the basis of security. This

solution was considered strong enough for many commer-

cial applications, and there is no evidence that anyone

mounted a successful attack on a device protected with it.

However, reliance on the tedium and complexity of bit-

stream reverse engineering seemed risky [49].

C. Modern FPGA Security
As FPGAs grew in capacity, the applications grew in

value, driving the need for stronger security. Over the

years, FPGA vendors have implemented circuitry, soft-

ware, IP cores, and usage models to address security

threats. Since the FPGA application design is embodied in

a design file, aspects of information security, notably en-

cryption and authentication, were applied to FPGA bit-
streams. But that was not enough. Given that FPGAs were

deployed into a hostile environment, measures were taken

also to improve protocols and implementations to secure

designs in the field. These include not only cryptography

on the configuration files but also development of fault-

tolerant design methodologies for the base array and for

applications. Today, FPGA security is strong enough that

they are deployed in security-sensitive applications in
commercial and government systems [24].

V. INFORMATION ASSURANCE

The basic tenets of information assurance (IA) are:

confidentiality, integrity, availability, authentication, and

nonrepudiation. As mentioned earlier, since access to the

FPGA is assumed, availability is not a requirement ad-
dressed by FPGA security features. Nonrepudiation will be

addressed in the context of authentication. Therefore, we

focus on confidentiality, integrity, and authentication.

A. Confidentiality
Large FPGA designs can contain IP of significant value,

and bitstream encryption prevents a competitor from

simply copying that IP. Encryption can also provide trust
assurance by limiting access to the FPGA only to designs

constructed with the proper key.

1) Overview of Bitstream Encryption: Xilinx (San Jose, CA,

USA) introduced bitstream encryption in 2001 in Virtex-II

devices [40], [41] to address the problem of unauthorized

copy of the bitstream as it is loaded into the FPGA from

external memory. Since that time, other FPGA vendors
have added encrypted-bitstream capability.

Preventing unauthorized copy does not strictly

require encryption, since the task from a cryptographic

point of view is to determine if the bitstream is author-

ized to operate in the FPGA. This fundamentally requires

authentication, not confidentiality: a device could verify

a message authentication code on the bitstream. How-

ever, the adversary’s workaround is simple: reverse engi-
neer the bitstream, recompile, and load it into a new

FPGA with the authentication removed. Therefore, re-

verse engineering must also be prevented, so confi-

dentiality of the bitstream becomes a requirement for

preventing cloning.

Virtex-II FPGAs used triple-Data Encryption Standard

(DES) encryption and subsequent Xilinx FPGAs use 256-b

Advanced Encryption Standard (AES). Recent SRAM
devices from Altera Corporation (San Jose, CA, USA) [4]

and Flash devices from Microsemi Corporation (Aliso

Viejo, CA, USA) [28] also use 256 b AES. Lattice

Semiconductor (Hillsboro, OR, USA) devices use 128 b

AES [19]. Although features have changed over the years,

and details vary among vendors, the basics of FPGA

bitstream encryption for all SRAM and Flash FPGAs are

similar. The major components and use flow are described
here with respect to the Xilinx, Inc. (San Jose, CA, USA)

7-series FPGA.

An application developer prepares a secured FPGA

application with the same tools and processes used for any

other application. At the end of the design process, when

the bitstream is generated, Xilinx proprietary software en-

crypts the bitstream. The Xilinx software can supply a ran-

domly generated key and initialization vector or the
application developer may supply those values. The Xilinx

software produces the encrypted bitstream and a key-

insertion file.

2) Key Loading: At a secure facility, the application

developer uses the key-insertion file to load the decryption

key into the FPGA through the JTAG scan chain, as shown

in Fig. 3. On-chip, the key is stored in either dedicated
nonvolatile or volatile memory. FPGAs supply an inde-

pendent battery-backed array for volatile storage or one-

time-programmable eFuses for nonvolatile storage or both.

Typically, the key is loaded into the FPGA in plaintext

form, which is why this must be done at a trusted facility.

Alternative strategies for key loading and key storage are

discussed in Section VI-A2.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

1252 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

3) Bitstream Loading: Later, in the field when the FPGA

board boots, the FPGA loads its bitstream from an external
memory. The FPGA begins loading an unencrypted bit-

stream. If the bitstream includes an encrypted-bitstream

indicator, the FPGA starts the decryptor and decrypts the

remainder of the bitstream as it loads. If the encrypted-

bitstream indicator is not present, the FPGA bypasses the

decryptor. This feature allows an FPGA in the field to be

booted with either an encrypted bitstream or an unen-

crypted bitstream for test purposes without compromising
the security of the bitstream confidentiality. In addition,

most FPGAs now offer the ability to force the device to

always configure with an encrypted bitstream.

B. Data Integrity
Bitstream data integrity, the ability to ensure a design

has not been accidentally modified, was a feature of very

early FPGAs. In those early devices, an improperly prog-

rammed FPGA might enable two large internal drivers in

contention, generating excessive heat and current, dam-

aging the chip. To prevent this, data integrity checks were

added to FPGA bitstreams to detect corruption of the bit-
stream during loading. Cyclic redundancy check (CRC), a

common data integrity check in data transmission proto-

cols, was deployed in many FPGAs. While CRC is effective

in detecting accidental data corruption, it is ineffective

against intentional data modification.

1) Tampering With Encrypted Bitstreams: Xilinx FPGAs

use 256 b AES encryption [11] in cipher block chaining
(CBC) mode of operation [33] to produce a stream cipher.

In CBC encryption, each block of data is first xored with

the ciphertext of the previous encryption before being en-

crypted. In decryption, the decrypted plaintext of each

block is xored with the ciphertext of the previous block

(Fig. 4). CBC causes blocks with identical plaintext (for

example, all zero) to encrypt to different ciphertext,

thereby eliminating a dictionary attack on the data. Altera

devices use AES in counter mode (CTR) [30]. In CTR
mode, an encryptor encrypts the output of a counter to

generate a pseudorandom stream of bits. That pseudo-

random stream is xored with the plaintext to generate

ciphertext. On decryption, an encryptor generates the

same pseudorandom stream to recover the plaintext.

CBC and CTR are non-error-extension modes of ope-

ration, meaning that corruption of the encrypted data

causes only a localized corruption of the corresponding
plaintext. Therefore, both CBC and CTR permit a ‘‘bit-

flipping’’ attack on the plaintext. The attack is shown in

Fig. 4 with respect to CBC. If an adversary inverts a bit in

the first encrypted block, as shown by the shaded area, the

first block will decrypt to unintelligible nonsense. How-

ever, the corresponding plaintext bit in the next decrypted

block is inverted. Bit-flipping CTR mode is more straight-

forward, since a bit flip anywhere in the ciphertext inverts
the corresponding bit in the decrypted plaintext without

disrupting any other data.

Using this bit-flipping technique, an adversary can

selectively invert any number of bits in the decrypted bit-

stream. If the location and state of the target bit are

known, an adversary can set it. For example, if the logic to

enable bitstream readback is disabled with a ‘‘0’’ at a

specific location, an adversary could reenable bitstream
readback without knowing the contents of the bitstream

by inverting that one bit. For this reason, disabling of

readback of an encrypted FPGA bitstream is not controlled

by bits in the encrypted bitstream itself, but is instead

controlled by the configuration logic of the FPGA. When

the FPGA loads an encrypted bitstream, readback is dis-

abled regardless of the bitstream contents. However, other

attacks may attempt to modify the FPGA in a simple way:
enable the internal configuration access port (ICAP), ena-

ble input/output (I/O) blocks, or change clock speed in an

attempt to gain access to internal data.

Fig. 3. Encryption architecture for Xilinx 7-series FPGAs.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1253

Attacks on the bitstream are also possible without

knowing the specific bit to attack. In Fig. 4, the first block

of data is scrambled. An adversary does not know the

plaintext that results from modifying the ciphertext. If the

number of bits to control is small enough, an attacker with
patience may attempt a brute-force attack on part of the

bitstream. Scrambling the bits may program the FPGA to

perform a function it was not supposed to, such as leak-

sensitive information.

Checksums and CRCs on the FPGA bitstream detect

errors in transmission, corrupted bitstreams, and uninten-

tionally flipped bits. However, it is computationally

straightforward to compute a revised CRC after tampering
with the bitstream or to determine a set of bit flips that

produce the same CRC value. Further, a CRC is typically

only 16 or 32 b, so brute-force attacks on the CRC are

tractable. Finally, in some FPGA architectures, CRCs can

be disabled altogether. Simple data integrity checks are not

sufficient to ensure that a bitstream has not been inten-

tionally tampered.

C. Authentication
Communication of the bitstream to the FPGA is a one-

way transfer. Therefore, two-way entity authentication

cannot be performed. Instead, FPGAs rely on one-way

message authentication, which assures the recipient of a

message that the message is exactly the message the sender
intended [8]. Strong authentication requires a message

authentication code (MAC), a cryptographic hash function

computed over the entire message. The hash function must

be impossible to compute without knowing the plaintext of

the message. The difficulty of recomputation of the MAC

eliminates all forms of CRC as the hash function, since each

bit of the CRC is a known xor of a set of bits of the message.

Because authentication verifies that the application has

not been accidentally or intentionally altered, it assures

trust in the running application. That trust enables an ap-

plication developer to guarantee protection of crypto-

graphic services and the handling of sensitive data. These
sensitive data may be customer data of high value, such as

personal data in a database or copyrighted video. The

cryptographic services may include key management

functions, encryption/decryption algorithms, or keys for

further partial reconfiguration of the FPGA. Data authen-

tication provides a strong root of trust, allowing an initial

FPGA configuration to act as a trusted boot loader for

trusted subsequent configuration of the FPGA.
Xilinx integrated strong data authentication in Virtex-6

devices and 7-series to address the concerns of targeted

tampering with encrypted bitstreams and the inherent

cryptographic weaknesses of CRC. Microsemi also has a

dedicated data integrity check for all of the nonvolatile

configuration memory segments of some Flash devices

[28]. Authentication is described here as it is implemented

in Xilinx devices.

1) Data Authentication in Xilinx Virtex Devices: Virtex-6

and subsequent Xilinx FPGAs authenticate using the

secure hash algorithm (SHA-256) to compute a 256-b

keyed hashed MAC (HMAC) [12], [13], [42]. SHA-256 is

a one-way hashing algorithm with a compact hardware

implementation. The keyed HMAC requires a secret au-

thentication key included in the hash. The MAC result
cannot be computed without knowing the key, thereby

authenticating the identity of the sender as well as veri-

fying that the message has not been altered. The 256-b

hash size ensures that any tampering with the bitstream

will be detected with a high probability. HMAC with

Fig. 4. Bit-flipping attack on CBC mode.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

1254 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

SHA-256 makes tampering with the bitstream as compu-
tationally difficult as guessing the encryption key, which is

also 256 b.

2) Integration of Authentication With Bitstream Encryp-
tion: Virtex devices use generic composition of the SHA-

256 keyed HMAC authentication with AES-256 encryption

[34], [37]. Generic composition allowed the two parts to be

separated, which permitted them to be developed inde-
pendently and separately pipelined.

Virtex-6 and 7-series authentication and encryption are

composed using authentication then encryption (AtE). The

HMAC is computed on the plaintext, unencrypted bit-

stream. The configuration data and the MAC result value

are then encrypted. On the FPGA, the data are first de-

crypted and the MAC result is recomputed on the de-

crypted data and compared with the transmitted value in
the bitstream. If the two MAC values disagree, the FPGA

configuration fails and the FPGA does not become active.

The authentication check catches errors in transmission

and attempts to configure the FPGA with the incorrect key

value as well as intentional tampering.

3) The Authentication Key: HMAC requires a secret

authentication key in addition to the decryption key [12].
When generating an authenticated encrypted bitstream,

both keys are specified to the bitstream generation soft-

ware. To save nonvolatile storage space, only the decryp-

tion key is stored in the FPGA array. Because of the AtE

composition, the encrypted authentication key can be

transmitted with the bitstream. The bitstream encryption

provides the privacy to keep the authentication key secret.

4) Authentication Using Public Key Cryptography in FPGAs/
SoCs: The recent introduction of programmable systems on

chip (SoCs) from FPGA manufacturers, including the

Xilinx Zynq and Microsemi SmartFusion2 devices, have

brought public key cryptography to the programmable

logic market. Both of these devices use asymmetric crypto-

graphy to provide authentication during the secure boot

process. The public key is stored on-chip in nonvolatile
memory and its integrity checked before use. Public-key

authentication of configuration files such as a first stage

boot loader (FSBL) detects random-data attacks such as

those commonly used for side-channel attacks. It can also

serve to provide nonrepudiation of protected applications.

D. Bitstream Structure
Fig. 5 compares bitstream structures of representative

Xilinx FPGA families, each with different security capa-

bilities [42]. Fig. 5(a) shows the bitstream format of an

unencrypted bitstream for Virtex devices. The unen-

crypted bitstream structure starts with a synchronization

word (SYNC) followed by a sequence of instructions.

Header commands set registers and control a variety of

functions, including declaring the device type and setting

up the startup sequence. The available commands and

registers are described in the Configuration User Guides

for each device family [50], [51]. The Write Frame Data

Register Immediate (Write FDRI) command begins
streaming the configuration data to the FPGA’s configu-

ration memory. An unencrypted bitstream can contain any

number of Write FDRI commands, each writing a differ-

ent, possibly discontinuous, portion of the FPGA config-

uration memory. Footer commands allow setting of

register values after loading configuration data. CRC veri-

fies data integrity and STARTUP begins the FPGA startup

sequence. DESYNC prepares the configuration logic to
accept postconfiguration reconfiguration commands.

Virtex-II through Virtex-5 FPGAs allowed encryption of

the FPGA configuration data, but not authentication. As a

representative of those encrypted-only bitstreams, Fig. 5(b)

shows a Virtex-5 encrypted bitstream structure. The CTL

instruction informs the FPGA that this is an encrypted bit-

stream. If the CTL command is missing, the FPGA assumes

the bitstream is unencrypted. CBC IV is the initialization
vector for the AES CBC register. The CBC IV does not need

to be secret, and it is evident in the bitstream structure that

it is set with an unencrypted header command. The Write

FDRI command passes encrypted configuration data

through the decryptor. The Write FDRI command includes

a length field, also transmitted unencrypted, so the de-

cryptor decrypts the proper amount of data. Only the

configuration data are encrypted, although the CRC is
computed on all data that precede it in the bitstream.

Fig. 5(c) shows an authenticated encrypted bitstream

from Virtex-6 and 7-series devices. Authentication and

encryption are always used together. There is no way to

specify a bitstream that is only encrypted or only

Fig. 5. Xilinx bitstream structure. (a) Unencrypted. (b) Virtex-5.

Shaded area is encrypted. (c) Virtex-6/7-series. Shaded area is

authenticated and encrypted.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1255

authenticated for these devices. As in earlier devices, the
CTL instruction informs the FPGA that the bitstream has

security enabled. The CBC initialization vector initializes

the decryptor as before. Decrypt word count (DWC)

indicates to the FPGA the amount of secure data to follow.

DWC includes not only the configuration data but header

and footer commands as well. Header commands and

footer commands are encrypted and covered by authenti-

cation. DWC is transmitted in the clear and could be
modified by an adversary, but since the length of the data is

included in the MAC computation, a modification of DWC

will invalidate the computed MAC.

The authentication key is transmitted to the FPGA at

the start of configuration and again at the end of confi-

guration, since the key is used twice in the HMAC com-

putation. ALIGN is a variable number of no-operation

instructions, inserted to ensure the authenticated en-
crypted data are an even multiple of 512 b, simplifying the

MAC computation. At the end of the bitstream, the re-

quired MAC is transmitted to the FPGA where it is com-

pared with the MAC computed by the FPGA.

Confidentiality, data integrity, and data authentication

of the configuration data are all required to protect FPGA

configuration data that are exposed to potential adversar-

ies. To date, only a few devices available from Xilinx and
Microsemi provide all three protections on their config-

uration files.

VI. ANTI-TAMPER

Physical security of the FPGA is just as critical as the ap-

plication of confidentiality, integrity, and authentication to

the device configuration. While there are focus areas of AT
that overlap with IA, there are also aspects of AT that are

unique. FPGA manufacturers are faced with a number of

challenges while focusing on improving the physical secu-

rity of the device. As commercial products, some of the

challenges include, but are not limited to:

• FPGAs are readily available for adversaries to ex-

periment on;

• compliance with U.S. and worldwide export and
import restrictionsVmanufacturers must be able

to sell their product worldwide, and do so while

meeting all import/export laws;

• FPGAs are cost sensitive, requiring a careful ba-

lance between protecting customers’ IP and ena-

bling FPGA use in all types of systems.

There has been significant investment by FPGA manu-

facturers to enhance the physical security of their devices,
driven primarily by the continual growth in performance,

density, and capabilities. This puts FPGAs at the heart of

most electronic systems today, where customers’ IP must

be protected.

This section describes some of the primary security

features and protocols of the Xilinx 7-series FPGA. These

are explored by looking at the configuration lifecycle of the

device. AT protections are employed preconfiguration,
during configuration, and postconfiguration.

A. Preconfiguration

1) Defense Against Trojan Insertion: FPGAs allow the

ability to configure either encrypted or unencrypted. This

is useful for application developers who may not want to

use encryption during integration and test, but then enable
encryption when the system is fielded. This ability to con-

figure either encrypted or unencrypted, subjects the device

to a class of Trojan insertion attacks.

If an FPGA contains a decrypted bitstream, an adver-

sary may attempt to load a partial configuration into a

subset of the device that spies on the resident application.

It could connect to internal signals or memories. By con-

necting to internal components, the Trojan could be used
to deduce the secured application in the FPGA. Con-

versely, an adversary may operate the same attack by pre-

loading a Trojan design and interrupting the secure loading

of the protected application.

Consequently, Xilinx FPGAs do not permit mixing

encrypted and unencrypted bitstreams, or partial bit-

streams, in any order. A new configuration of the device

requires fully clearing the existing device, either by cycling
power or executing the JTAG JPROGRAM command.

Both methods initiate internal device housekeeping,

which clears all configuration and internal memory.

Similar concerns exist today with SoCs being intro-

duced by the FPGA manufactures. Xilinx, Altera, and

Microsemi are now offering processor-centric SoC devices

that typically have separate and independent regions for

the processor subsystem and the programmable logic. The
independence provides users flexibility and the ability to

significantly reduce power by turning off the programma-

ble logic. This capability presents vulnerability. If an ad-

versary can preload a Trojan, either into the processor

memory or the programmable logic before allowing the

device to boot normally, then the Trojan will have access to

the entire internal application running on the device. As

with Xilinx FPGAs, Xilinx SoCs have been designed to ad-
dress this security concern. The Xilinx Zynq device boots

both the processor and the programmable fabric from the

same root of trust, either fully secured, or fully open.

The Trojan insertion vulnerability also exists postconfi-

guration. Xilinx and Altera FPGA families permit partial

reconfiguration, the ability to change the configuration of a

section of the FPGA while the rest operates normally. This

feature has proven to be very valuable for innovative ap-
plications. However, it also is susceptible to a Trojan

insertion attack after the initial configuration. The appli-

cation design must authenticate postconfiguration bit-

streams to exclude Trojans.

2) Protecting Keys: The secrecy of a cryptographic key is

fundamental to security; protecting the key is the first

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

1256 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

priority of the FPGA manufacturer. As stated earlier, this
can be a challenge for commercial vendors who are de-

veloping a device that is used in nearly all types of ap-

plications, and not specifically designed for a specific

domain, application, or cost point. Also important to note

is the fact that while we address the protection of keys here

in the preconfiguration section of this paper, protection of

keys is essential before, during, and after configuration.

a) Key storageVTechnology: Most FPGA manufac-
turers provide both volatile and nonvolatile key storage. In

the case of SRAM FPGAs, volatile key storage is imple-

mented as battery-backed RAM (BBRAM) and nonvolatile

key storage is implemented as eFuses. Each has advantages

and disadvantages.

BBRAM key storage requires no process changes, mak-

ing it easily implemented in state-of-the-art process tech-

nology. The volatile key storage also allows for key agility
and key zeroization, critical components of a strong cryp-

tographic system. In Xilinx FPGAs, when primary power is

applied, the BBRAM is powered by that power supply, which

not only reduces the drain on the battery but also permits

replacing the battery in fielded system. Altera specifies that a

battery must be attached before the key is loaded, implying

that the source for the BBRAM memory is only the external

battery [4]. Xilinx also provides an internal interface that
can be used by an application to command a zeroization of

the key space. Zeroization is intended for use when the

FPGA detects tampering with an operating application.

BBRAM is not without its disadvantages. A momentary

loss of contact or low battery voltage could cause the key to

be lost. While modern coin-cell batteries hold enough

energy to hold encryption keys for the design lifetime of

20 years, and new betavoltaic batteries with great re-
liability are being introduced to the market, many battery

vendors do not specify thermal wearout or other failure

modes, for the length of time required by most FPGA

users.

BBRAM is inherently more physically secure than

nonvolatile key storage technology. To steal the key, an

adversary would need to decap the FPGA and mill away

many levels of metal, then scan the bits with a scanning
electron microscope (SEM). This attack must be per-

formed while keeping clean power to the key memory.

This is the type of attack required to extract the entire

configuration directly from the FPGA SRAM cells as well,

so no bitstream encryption method is qualitatively

stronger. This attack is considered to be beyond the capa-

bilities of all but the most sophisticated of adversaries.

An eFuse provides a simple, one-time-programmable
nonvolatile memory. Because they are nonvolatile, eFuses

eliminate the maintenance issues associated with a battery.

A common eFuse structure is a narrow wire that is prog-

rammed by electromigration from high programming cur-

rent. eFuses are simple to build and program, requiring no

additional process complexity or high voltage. However,

eFuses and their programming circuitry are rather large, so

eFuses are practical only for small amounts of memory,
such as a decryption key. The physical change caused by

eFuse programming is visible under a microscope, so

eFuses are comparatively easy to reverse engineer from a

decapped part. Of course, they cannot be reprogrammed or

erased. However, to zeroize an eFuse key, one could burn

all eFuse cells in the key.

b) Key loading: The JTAG test port is a common in-

terface for loading keys into programmable logic devices
[4], [22], [35]. Loading a key into a Xilinx device begins by

first executing a JTAG command to enter key access mode,

which clears the existing key and all configuration data and

memory in the FPGA. A second JTAG command writes the

new key and reads it back to verify it. Of course, on power-

up, FPGAs key access is disabled.

Details of key loading vary considerably among manu-

facturers. Loading of the key may be done in plaintext
(‘‘red key load’’) or ciphertext (‘‘black key load’’) or other-

wise obscured. In Xilinx devices, the key is transmitted to

the FPGA in the plaintext, so it must be loaded in a secure

location. The key access control sequence ensures that the

key is cleared before any command is executed that could

read it back. Other vendors have chosen alternative solu-

tions. Altera Stratix devices include a key obfuscation

mechanism so the key may be presented to the FPGA in an
encrypted form. Moradi [32] reported that two 128 b keys

are used by Altera Stratix-II devices. The bitstream key is

transmitted and stored in encrypted form, encrypted by a

second key, which is presented without any obfuscation.

Although the key used to decrypt user data is not trans-

mitted or stored in the FPGA, and hence cannot be ex-

tracted, it can be computed by a straightforward algorithm

from the readable key that accompanies it. In Altera
Stratix-V devices, the user key is sent through a one-way

function before being stored on the device [4]. In both

of these scenarios, the loading of the key is obscured, and

while not cryptographically sound, may provide a level of

security acceptable at a given price point.

Microsemi is the first FPGA manufacturer to offer a

true ‘‘black-key load’’: the key is encrypted by a secret key

before loading. In selected SmartFusion2 devices, the de-
vice and user exchange public keys and perform an elliptic

curve Diffie–Hellman (ECDH) exchange to generate a key

that can be used for the authenticated/encrypted loading of

a user key [28]. The generated key is used as a key encryp-

tion key (KEK) to encrypt the user key on the transmit side,

and to decrypt the user key within the SmartFusion2 device.

c) Key storageVred or black?: Much like key loading,

the device key can be stored in plaintext, ciphertext, or
obfuscated form. Xilinx stores 7-series keys in plaintext

form. An adversary who decaps the part and can identify

the key storage cells can attempt to extract the actual key

bits. An obfuscated key defeats this attack until the obfus-

cation method is discovered. Altera implemented a key

obfuscation algorithm in Stratix devices, so that probing

the device could not divulge the key directly. When the

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1257

obfuscation algorithm was revealed, obfuscation was no
longer a barrier to invasive key extraction [32].

Selected SmartFusion2 devices from Microsemi make

use of Intrinsic-ID’s (Eindhoven, The Netherlands)

Quiddikey technology [17]. This technology does not store

an encryption key on-chip. Instead, it generates the key

when needed through the use of an activation code gene-

rated during an enrollment phase, and the output of

Intrinsic-ID’s SRAM-based physically uncloneable func-
tion (PUF) [17], [29].

d) Eliminating keys: When an unauthorized event

occurs, the application may need to eliminate sensitive

keys within the device. For systems that employ BBRAM

key storage, there are multiple options. First, passive era-

sure can be accomplished by simply electrically discon-

necting the battery from the supply. Second, for Xilinx

devices, an external device could send the appropriate
JTAG command to enter key access mode. As mentioned

earlier, this actively clears the device key and the configu-

ration of the device. Finally, most FPGA vendors have the

ability to erase the key from within the device under con-

trol of the application [4], [29], [38]. Xilinx and Microsemi

offer the ability to fully zeroize the device key, actively

erase the key, and then verify that it indeed has been

erased, either through readback or dedicated hardware.

3) Antispoofing: When they are manufactured, FPGAs

can accept either an unencrypted bitstream or an en-

crypted bitstream. All programmable logic vendors that

provide encrypted bitstreams have the ability to modify the

FPGA to require an encrypted configuration. This modi-

fication involves programming a nonvolatile eFuse register

that disables unencrypted configuration. An adversary
cannot substitute an alternative bitstream in the device or

change the key. Instead, that adversary must replace the

FPGA with another equivalent device. This solution pro-

vides no value with a BBRAM volatile key, as the adversary

only needs to remove the battery to clear the key, then load

a new key into the device to gain access. Of course, an

adversary can circumvent the antispoofing by replacing the

protected FPGA with a new, unprogrammed one. None-
theless, antispoofing the device is a cost-effective compo-

nent of overall system security.

4) Test Circuitry: Because it provides access to and

control of internal nodes, test circuitry has long been a

primary point of security vulnerability in integrated cir-

cuits, and must be disabled for a secure application to

indeed be secure. While protection of test circuitry is dis-
cussed in this preconfiguration section, it must be consid-

ered during configuration and postconfiguration as well.

Test interfaces can be disabled in many ways. Pro-

prietary test interfaces are typically handled differently

than industry-standard interfaces such as JTAG. Xilinx

disables readback by setting internal security bits when an

encrypted bitstream is loaded. In the Zynq SoC, eFuses

may be used to disable test interfaces permanently [36].
Test disable is also provided in Altera devices where a

tamper-protection bit disables the test modes of the FPGA

[4]. When permanently disabling test circuitry, users must

be aware of the consequences for additional failure anal-

ysis: if the test access port has been disabled, there is very

little anyone can do to debug the device.

Microsemi and Xilinx provide mechanisms to perma-

nently disable the JTAG interface as well as monitor it
internally for tamper conditions [29], [35]. Altera has the

ability to reduce the number of JTAG commands executed

to only those mandatory by the standard (e.g., Extest,

Intest, IDCODE, etc.). The execution of nonmandatory

JTAG instructions can be enabled by issuing the UNLOCK

JTAG instruction, which is only allowed to execute when

sent from within the device [4].

B. During Configuration

1) Side-Channel Attacks on Keys: In recent literature,

Xilinx, Altera, and Microsemi FPGAs have been shown to

be vulnerable to differential power analysis (DPA) attacks

on their keys [30]–[32], [38]. Although noninvasive, these

published attacks employ a custom board with a significant

reduction in bypass capacitance in order to enhance the
power signal. This brings up the question of the difficulty

of moving an FPGA from one board to another while

keeping the key intact. eFuse, antifuse, and Flash storage

should be unaffected, but battery backed RAM keys are lost

if, during the transfer, power is lost to the keys or if the

device temperature exceeds operating limits.

Security is always a moving target. Attacks continue to

improve, and since a custom board is not required, in
principle, to mount a DPA attack, one would expect that

future side-channel attacks on FPGAs will target devices in

their native environment. Defenses improve as well. As

side-channel attacks became better understood, FPGA

vendors added countermeasures, though they are not al-

ways explicit about precisely what they have done. Micro-

semi has licensed CRI technology, but has not released

which aspects of that technology they have used. Other
vendors are silent on the question of precise circuit details

to address DPA.

C. Postconfiguration
FPGAs rely on the application as an active participant

in protecting the device after configuration, a capability

somewhat novel to FPGAs [45]. FPGAs provide security-

related features, but leave the policy decision of handing
the features to the user of the FPGA to implement in the

application.

1) Readback Disable: Traditional FPGA operation allows

the unencrypted bitstream and data to be read out using

the bitstream readback command. Therefore, when an

FPGA loads an encrypted bitstream, it disables the

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

1258 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

readback mechanism, regardless of bitstream settings. This
automatic, mandatory setting prevents the simple attack of

using the FPGA to decrypt the bitstream, then reading it

out. Readback continues to be a valuable feature for both

the FPGA manufacturer and the application developer.

Proper measures must be taken so that it does not jeo-

pardize the application security.

Skorobogatov and Woods [38] used a side-channel

attack to extract a key that unlocked readback in an FPGA
that was advertised to have no such capability. While sen-

sationalized as a back door, and questioned for who in-

serted it, and for whom, in all practicality it was no more

than an interface used for device test.

2) Restricted Access to Base Silicon Cryptographic Logic:
On-chip cryptographic functions, such as the decryptor,

are well-tested, high-speed logic designs of a standard
function. It would seem efficient to allow an operating

FPGA application to use cryptographic functions after

configuration. However, user access to the decryptor, or

other cryptographic functions, permits data flow paths that

complicate the analysis of the security of the base silicon. If

the user has access to the cryptographic functions, and the

device is programmed to permit unencrypted bitstreams,

then the adversary has access to the cryptographic func-
tions as well. The manufacturer must perform a security

analysis to verify that no key data could leak into the

application domain.

Second, there are U.S. export and various national

import laws worldwide that add risk to the manufacturer if

cryptographic functions are used for more than just the

configuration of the device. Third, most cryptographic

functions, such as AES decyrptors are simply not very large
and can be implemented in the user application without

consuming much of the FPGA logic. Finally, users have a

wide range of needs for cryptographic services. This be-

comes a cost/benefit tradeoff for the manufacturer. Xilinx

and Altera do not allow access to the cryptographic

functions on the FPGAs. Microsemi allows access to the

cryptographic functions on selected models of the

SmartFusion2 devices [28].

3) Restricted Access to Base Silicon Features: Concern

over tampered bitstreams in early Virtex devices led Xilinx

to prohibit reconfiguration of encrypted bitstreams. This

restriction applied to the internal configuration access port

(ICAP) as well as the external configuration port. The

concern was that a bitstream might be tampered to enable

access to ICAP, which could then be used to read back the
decrypted configuration. Virtex-II through Virtex-5 de-

vices required encrypted bitstreams to pass a CRC to begin

operating, thus ensuring the integrity of the bitstream

data. However, as described earlier, CRC does not give a

strong defense against bitstream tampering.

Since the addition of authentication in Virtex-6 and

7-series, a secured bitstream must pass the authentication

check, defeating any bitstream tampering. Since an au-
thenticated bitstream could not have been modified by an

adversary, it can be trusted. This trust applies to the appli-

cation in general, but specifically enables trusted self-

reconfiguration with the ICAP. Since the application

design is trusted, ICAP operation is permitted with au-

thenticated encrypted bitstreams. An authenticated bit-

stream may use the ICAP to launch a partial configuration

while the device continues to operate, allowing the design
of a trusted reconfigurable platform [53].

ICAP is a Xilinx-specific example of a base silicon fea-

ture that, if used maliciously, could provide a vulnerability

without the appropriate protections. In all cases, the man-

ufacturer must provide safeguards, while the application

developer has final responsibility. It is, of course, possible

to construct an insecure application despite the encryption

and authentication. For example, if an application devel-
oper connected the ICAP interface directly to the external

pins, an adversary could interrogate the ICAP to read back

the unencrypted application bitstream. FPGA security

enables the construction of secure applications; it does not

guarantee them.

4) The Value of ICAP and Checking Designs in the Field:
ICAP permits logic inside the FPGA to read and write its
own bitstream, providing a wide range of powerful use

cases. These include:

• internal readback of the device configuration for

in-system integrity checks;

• configuration clearing and zeroization;

• algorithm agility for those applications that need to

change algorithms without a complete reconfigu-

ration of the device;
• self-test;

• use of user-specific decryption and authentication

algorithms with custom protections against attacks

such as DPA or other side-channel attacks;

• configuration repair: random single-event upsets

(SEU) [23], [52] or intentional tampering may

cause configuration bits inside the FPGA to

change. Jones [19] describes the SEU controller,
an application in which the FPGA logic reads its

own bitstream internally through ICAP, checks the

stored bitstream with previously computed ECC

data, and corrects configuration errors. The SEU

controller is intended to detect and correct errors

in a high-reliability environment, but it can be used

to detect tampering with the FPGA in the field if

individual bits are flipped. More recent FPGAs
include the SEU detection and scrubbing feature in

dedicated hardware [35].

D. Invasive Attacks
Because of the environment of the fielded FPGA, the

difficulty of protecting FPGA keys and configuration data

persists regardless of the technology used to store them.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1259

When an adversary can physically open the device and scan
the contents, no storage technology is wholly secure.

However, using our model of cost-based security, some

storage methods are more expensive to break, sometimes

despite having no qualitative advantage.

The strongest way to prevent theft and tampering with

a bitstream is to keep it out of an adversary’s hands. The

Xilinx Spartan 3AN is a multichip package containing an

FPGA die and a flash memory die. Since nothing is trans-
mitted from an external source, the trivial bitstream inter-

ception method does not work. However, after decapping

the package, the signals between die can be probed to

pirate the bitstream.

MicroSemi’s SmartFusion devices have internal non-

volatile Flash memory storage as well. These devices are

still subject to physical, invasive attack, though that attack

is more difficult for several reasons. The storage in these
devices is distributed around the device, and there is no

localized point at which one could intercept the config-

uration data, so the attack must scan the entire device.

Programmed Flash and antifuse cells are not observably

changed from unprogrammed cells, so the detection of

programming is more difficult. It may require SEM or

thermal analysis. SEM images of programmed and unprog-

rammed antifuse cells show no apparent differences [2].
Invasive physical attacks on antifuse devices and Flash

devices are qualitatively no more difficult than methods for

extracting eFuse bits. However, these attacks are consid-

ered significantly more expensive because millions of bits

of data must be extracted, rather than merely a 256-b key.

Further, the resulting extracted programming is not for-

matted for programming another FPGA, so it must be

formatted properly by the adversary in order to clone the
design. The proper format is not published, so there is no

cryptographically strong protection, but it is considered

difficult and tedious.

Despite the concerns, there has not been a report of a

successful invasive attack on any FPGA regardless of the

internal storage: SRAM, BBRAM, eFuse, Antifuse, or Flash.

E. Environmental Attacks
The circuits inside FPGAs that implement the security

functions are no less susceptible to attack than those in

other semiconductor integrated circuits. Published attacks

on security functions in other devices include out-of-range

temperature and power adjustment, overclocking, and

other environmental attacks. Defense against these attacks

is very difficult because, by definition, semiconductor

foundries do not guarantee operation outside their gua-
ranteed environmental range. FIPS140-2, level 4, requires

environmental failure protection on cryptographic mod-

ules [10] and FPGA vendors provide limited protection

from environmental attacks.

The traditional response to environmental attacks has

been more robust circuitry, including dedicated voltage

regulation for security functions, large hamming distances

in security-critical state machines, and redundant storage
of critical state values, such as those disabling readback in

a secure system.

Xilinx provides an embedded analog-to-digital con-

verter (ADC) that can be used to monitor voltage and

temperature both outside and inside the FPGA. Users can

configure the circuitry to specific voltage and temperature

ranges based on the environment the system will operate

in. If the voltage or temperature exceeds this user-specified
range, an internal alarm signal will be generated notifying

the application running on the device. User-specific

actions can then be taken, for example, clearing sensitive

cryptographic variables in registers or RAMs, zeroizing the

key or clearing the configuration of the device itself and

shutting down.

With few exceptions, FPGA manufacturers do not pub-

lish details of their security circuitry. Microsemi FuseLock
and FlashLock include internal fuses or flash cells that

prevent inappropriate access. According to Microsemi,

‘‘special security keys are hidden throughout the fabric of

the device, preventing internal probing and overwriting.

They are located such that they cannot be accessed or

bypassed without destroying the rest of the device’’ [28].

Xilinx readback disabling circuitry has ‘‘hardened triple-

redundant logic’’ and key loading FSMs have ‘‘large ham-
ming distances between states’’ [35].

1) Device Identifier: A unique identifier is a powerful

way to restrict access to an FPGA, defeating cloning and

spoofing. An application can be coded to operate only on

the one device that matches a specific identifier or on a

subset of devices with a range of values.

Modern FPGAs contain a device identification register.
Xilinx provides device DNA, a 57-b serial number prog-

rammed in eFuses during manufacture and used for track-

ing devices. Device DNA is accessible from outside the

FPGA via JTAG. In addition, devices include a user-

programmable 32-b eFuse field that can be used as an

identifier as well. This user eFuse field is only available to

logic within the FPGA.

F. PUFs and FPGAs
Other alternatives exist for device identifier. PUFs [14],

[39] provide a device-specific unique identifier derived

from random process variations. A PUF generator pro-

duces a different signature for each manufactured device.

PUFs have been demonstrated in FPGA fabric (‘‘soft PUF’’)

as well as in dedicated logic (‘‘hard PUF’’). Microsemi’s

SmartFusion2 includes a hard PUF. Other FPGA vendors
have IP providers who provide soft PUF functions in fabric.

Therefore, application developers can build PUFs for de-

vice identification today with existing FPGAs.

There are several drawbacks for the use of PUFs that

have precluded their use as decryption keys in FPGAs.

First, the PUF only resides inside the device. It must be

read out of the device to encrypt the bitstream data file.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

1260 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

Alternatively, Kean recommended an encryption method
in which the FPGA encrypts its own data file using its

internal key and emits the encrypted data for external

storage [20]. More importantly, the PUF is unique to each

unit, so the bitstream must be encrypted uniquely for each

device. This problem may be addressed by including a key

transformation word, the exclusive-or of the computed

PUF for the device with the actual key used to decrypt the

data. Still, at system build time, the FPGA must be pow-
ered on and the transformation word derived. Perhaps

most importantly, PUFs are not stable: a few bits may

change over the lifetime of the device. This is not parti-

cularly important for a device identifier, but disastrous for

a decryption key. One method to compensate for this is the

addition of helper data to the PUF-encrypted bitstream.

Helper data are fundamentally error correcting code

information for correcting errant bits in the PUF. It is
unclear how much information about the key is leaked in

helper data. Finally, long-term PUF reliability data over

process, voltage, and temperature is sketchy at advanced

process nodes, leading to concern over lost keys during the

lifetime of the fielded device.

VII. APPLICATIONS

A. IFF Flow for Nonsecured Devices
Baetoniu [6] described ‘‘identification friend or foe’’

(IFF), a way to tie an FPGA bitstream to a specific

system. IFF uses an external storage device, a secure serial

electrically erasable programmable read-only memory

(EEPROM), such as the Dallas Semiconductor/Maxim

DS2432 (Fig. 6). The secure EEPROM includes a crypto-

graphic hash function. At system build time, the application
developer programs a secret key into the EEPROM and also

programs the secret key into the FPGA application.

After the FPGA boots, it uses its random number

generator to interrogate the EEPROM. The EEPROM

computes the hash of the random string with its stored key.

The FPGA does the same. If the two hashes match, the

FPGA continues to operate. If the hashes do not match, the

FPGA enacts countermeasures such as ceasing operation or
disabling premium functionality. The check may be

repeated as often as desired during operation.

IFF ties the FPGA bitstream to a properly programmed

secure EEPROM. Although it can be applied to an FPGA

without bitstream encryption, doing so leaves the system

vulnerable. An adversary may reverse engineer the bit-

stream and disable the check on the hash function. This

mechanism is even vulnerable with an encrypted, but not
authenticated, bitstream, because an adversary may at-

tempt to disable the hash function check by a bit-flipping

attack or random perturbation of the plaintext to disable

the hash check.

B. Metered IP
As third-party IP cores become more common, one

would like a mechanism to charge per copy for those

cores. The core vendor would be paid for each use, just as if
it had been a physical device. Guajardo et al. [15] described

a method for doing this and the company Intrinsic-ID

developed into a product under the brand name Quiddi-

card [17].

The method has an enrollment phase and an authenti-

cation phase. In the enrollment phase, the FPGA is prog-

rammed with a PUF which generates an identifier unique

to the FPGA. An activation code is generated from the PUF
value and stored off-chip. The activation code generation is

a proprietary algorithm, but may be an encryption of the

PUF value using a private key of a public/private key pair.

In the authentication phase, the same PUF is constructed

in the FPGA and the design is authorized with the acti-

vation code (Fig. 7).

To turn this activation process into an IP metering

mechanism, the generation of the activation code may be
done by a trusted third party, possibly a trusted piece of

billing hardware at a manufacturing site that reports the IP

usage as it generates the activation code. This mechanism

has been extended to include multiple keys to permit ac-

cess to multiple pieces of IP in the FPGA application [18].

This mechanism relies on confidentiality and authen-

tication of the application design, so that an adversary

Fig. 6. IFF design.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1261

cannot reverse engineer the device to remove the activa-

tion code checking. There is nothing fundamental about

using a PUF for identification. Device DNA or some other

unique or nearly unique fixed device identifier can serve.

C. Just in Time Secure Configuration
Utilizing partial reconfiguration and authenticated en-

crypted bitstreams, it is possible to design a system where

critical technology (CT) is only configured into the device

when it is needed, thereby adding an additional layer of
security to the system. Peterson [35] proposed a method by

which a user application is partitioned between CT and

non-CT. The non-CT is resident in the FPGA at all times

and the CT logic is partially reconfigured into the FPGA

only when needed. Otherwise, it is stored externally,

encrypted and authenticated.

The CT, which exists as a partial configuration, can be

decrypted by the device using the device key or by the
application using a user-specified algorithm implemented

in the FPGA fabric, and potentially a PUF to generate the

key. The boot configuration of the FPGA sends the CT

partial bitstreams to the ICAP so that the decryption pro-

cess is completely contained with the FPGA. Encryption is

required to ensure the privacy of keys included in the CT

partial bitstreams or the boot configuration bitstream.

Authentication is required so that the bitstreams cannot be
tampered in a way that compromises the CT partial bit-

streams. The IP described by Zeineddini and Wesselk-

amper [53] for secure and high-reliability applications

utilizing partial reconfiguration also checks for tampering.

It uses the integrated ADC to monitor power and tem-

perature, and checks the JTAG port to detect tamper

conditions. If necessary, the IP zeroizes the CT and its key.

D. Fault-Tolerant Design
FPGA manufacturers supporting confidentiality, in-

tegrity, and authentication of the configuration provide a

strong foundation that users can build high-reliability
system upon. Cryptographic processing and security

services, like any high-reliability function, must be fault

tolerant. Xilinx’s isolation design flow (IDF) [7], developed

in conjunction with government entities [24], was the first

in the programmable logic industry. Altera has since

developed similar technology, called the design separation

flow [5].

IDF provides fault containment at the FPGA module
level, enabling single-chip fault tolerance by various tech-

niques, including modular redundancy, watchdog alarms,

segregation by safety level, and isolation of test logic for

safe removal [7]. The applicability of this type of technol-

ogy goes beyond cryptographic processing and security.

The same technology can be used to aid in compliance for

systems that must be designed to safety-critical standards

such as IEC61508, ISO26262, and DO-254.
The basic concept is to separate critical and/or inten-

tionally redundant functions physically on the FPGA. This

can be accomplished through careful floorplanning and the

use of unused logic as fences. Fig. 8 represents a design

that has been floorplanned with IDF. Fig. 9 is the same

design after place and route.

The fences are exhaustively analyzed by the FPGA

manufacturer to show that a single failure would not com-
promise the isolation or redundancy built into the system.

The goal is to minimize the size of the fence to reduce the

inefficiencies that come with its use [16]. As an example,

the width or height of a fence made of configurable logic

blocks (CLBs) in a Xilinx 7-series FPGA is a single CLB.

In an ideal world, each module would be completely

isolated from each other. In practice, this scenario is not

feasible: some level of communication must exist between
isolated regions. Xilinx developed the concept of ‘‘trusted

routing,’’ restricted routing that is specifically chosen by

the place and route algorithms such that the isolation

established by the use of ‘‘fences’’ is not compromised.

Finally, no high-reliability system is complete without

the use of independent verification. To address concerns

associated with software ‘‘bugs’’ or inappropriate use of the

design methodology by the user, FPGA manufacturers must
provide independent verification tools that can be applied

to the design to validate the isolation of the modules. Xilinx

Fig. 8. Notional floorplan of a design into five isolated regions.

Fig. 7. Metered IP system architecture.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

1262 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

developed the isolation verification tool (IVT) for this

purpose. IVT can be used early in the development flow to

aid in isolation verification before a printed wiring board

(PWB) is committed. It is also used once the design is

complete in order to verify that the final design, placed and
routed, has the isolation designed in that the user intended.

E. Single-Chip Cryptography
Single-chip crypto (SCC) combines data of different

levels of secrecy or control in a single device. The device

must not only protect programs during loading, but also it

must defend against attacks from outside and attacks while

operating, including leakage of protected information
across internal boundaries. Therefore, single-chip cryp-

tography aggregates much of the technology discussed in

this paper.

SCC uses the authenticated encryption capability to

load a boot loader. The boot loader, isolation region #1 in

Fig. 8, manages further FPGA configuration, software for

on-chip processors, and data handling. Because it was au-

thenticated and encrypted, the boot loader is known to be
unaltered by potential adversaries or accidental bit errors.

In addition, sensitive data, such as session keys, are known

to be kept secret. To ensure no internal leakage of in-

formation, SCC implements the fences of IDF as described

in Section VII-D (Fig. 8) to separate sensitive data spatially

in the FPGA. This separation assures the confidentially of

sensitive information even in the presence of accidental or

intentional attacks on the fences. The spectrum of isola-
tion capabilities is sufficient to support applications such

as the separation of red and black data processing, key

management, and other high-reliability functions.

Bitstream scrubbing, using internal readback, contin-

ually monitors the configuration data, in particular the

isolation fences, to ensure that changes to the configura-

tion are detected and corrected quickly. SCC can even

verify that the device DNA is correct, ensuring operation
on the proper individual chip.

Starting with the root of trust, followed by the power

and flexibility of both hardware and software, coupled with

the application of isolation technologies and partial recon-

figuration, a system that would typically have been devel-

oped through the use of multiple devices now could be

integrated into just one with no loss of security.

VIII . THE FUTURE OF FPGA SECURITY

A. Field-Programmable SoC
SCC was originally conceptualized and developed in

cooperation with government authorities for FPGAs [24],

and the application provides additional value in new prog-

rammable SoCs such as Zynq. Zynq includes both a prog-
rammable logic subsystem (PL) that comprises hundreds

of thousands of gates of logic, and a processor subsystem

(PS) that includes a dual-core ARM (ARM Holdings,

Cambridge, U.K.) Cortex A9 processor, caches, memories,

and peripherals, connected to one another and to the PL

using an Advanced Microcontroller Bus Architecture

(AMBA) Advanced eXtensible Interface (AXI) bus. The

Zynq device boots securely, using authenticated encryp-
tion capabilities like those described for FPGAs. Zynq also

provides asymmetric and symmetric authentication, con-

fidentiality, and integrity. Leveraging this root of trust,

applications can implement cryptoprocessors or systems

performing cryptographic functions in the combination of

processor and FPGA with confidence that they have not

been compromised.

In Zynq, the processor subsystem is known to be iso-
lated physically from the programmable logic. Within the

PL, isolated regions as in IDF ensure separation of sensi-

tive data spatially. Within the PS, known software meth-

ods, such as hypervisors and ARM Trustzone technology

isolate sensitive software processes from other processes.

The trusted boot loader decrypts and authenticates all

configuration data and software.

Partial reconfiguration is further enhanced. The entire
PL can be reconfigured, or even powered down, controlled

by the PS. Alternatively, portions of the PL can be partially

reconfigured for applications that require algorithm agi-

lity. The same reliability checks performed on ICAP [52]

can be applied to the processor configuration access port

(PCAP) to ensure proper data integrity of software. De-

cryption and authentication of partial configuration files

Fig. 9. FPGA editor view of a design implemented using the

IDF methodology.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1263

can be performed by either the PS or the PL, allowing users
the flexibility to choose their own authentication and de-

cryption algorithms as well as perform functions such as

authenticate before decryption to aid in defense against

side-channel attacks. Of course, key management remains

a critical consideration in these applications.

B. Conclusion
Security in FPGAs has been driven by the need to

address new threats, by the growth in value of the IP of the

applications, and by the growth in the expected sophisti-

cation of the adversary. All three drivers continue to

operate. New areas of protection, such as confidentiality of

the data handled by the FPGA, metering of third-party IP,

and counterfeit protection motivate additional capabilities
and combinations of capabilities in the FPGA. Modern

FPGAs and new programmable SoC devices hold applica-

tions that comprise complete systems, processing very sen-

sitive data and controlling valuable systems. The high value

of the applications, the data they handle, and the systems

they control motivate well-equipped adversaries to steal IP

or to subvert the systems of which the FPGA is a part.

As adversaries become more sophisticated, so do the
FPGA defenses. Future FPGA security features must con-

tinue to improve to meet all three drivers. As in the past,

these features will include circuits on the base array,

algorithms in silicon, and IP in the programmable part of

the device. h

REF ERENCE S

[1] Actel, ‘‘Implementation of security
in Actel’s ProASIC and ProASICPLUS
Flash-based FPGAs,’’ Appl. Note AC185,
2003.

[2] Actel, ‘‘Understanding Actel antifuse device
security,’’ 2004. [Online]. Available: www.
actel.com/documents/AntifuseSecurityWP.
pdf.

[3] P. Alfke, ‘‘Configuration issues: Power-up,
volatility, security, battery back-up,’’
Xilinx, Appl. Note XAPP092, 1997. [Online].
Available: http://www.xilinx.com/support/
documentation/application_notes/xapp092.
pdf.

[4] Altera, ‘‘Using the design security features in
Altera FPGAs,’’ Appl. Note, AN-556, Jun. 19,
2013.

[5] Altera, ‘‘Quartus II design separation flow,’’
2013. [Online]. Available: http://www.altera.
com/literature/hb/qts/qts_qii51019.pdf.

[6] C. Baetoniu, ‘‘FPGA IFF copy protection using
Dallas Semiconductor/Maxim DS2432 Secure
EEPROMs,’’ Xilinx, Appl. Note XAPP780
v. 1.1, 2010. [Online]. Available: http://www.
zylinks.com/support/documentation/
application_notes/xapp780.pdf.

[7] J. D. Corbett, ‘‘The Xilinx isolation design
flow for fault-tolerant systems,’’ Xilinx
WP412, 2012. [Online]. Available: http://
www.xilinx.com/support/documentation/
white_papers/wp412_IDF_for_Fault_Toler-
ant_Sys.pdf.

[8] S. Drimer, ‘‘Authentication of FPGA
bitstreams, why and how,’’ Reconfigurable
Computing: Architectures, Tools and
Applications, vol. 4419. Berlin, Germany:
Springer-Verlag, 2007, pp. 73–84.

[9] S. Drimer, ‘‘Security for volatile FPGAs,’’
Ph.D. dissertation, Comput. Sci. Dept.,
Cambridge Univ., Cambridge, U.K., 2009.

[10] National Institute of Standards and
Technology (NIST), ‘‘Security requirements
for cryptographic modules,’’ FIPS 140-2, 2001.

[11] National Institute of Standards and
Technology (NIST), ‘‘Announcing the
advanced encryption standard,’’ FIPS 197,
2001.

[12] National Institute of Standards and
Technology (NIST), ‘‘The keyed-hash message
authentication code (HMAC),’’ FIPS PUB
198, Mar. 6, 2002. [Online]. Available:
http://csrc.nist.gov/publications/fips/
fips198-1/FIPS-198-1_final.pdf.

[13] National Institute of Standards and
Technology (NIST), ‘‘Secure hash standard,’’
FIPS PUB 180-2 + Change Notice to include

SHA-224, Aug. 1, 2002. [Online]. Available:
http://csrc.nist.gov/publications/fips/fips180-
2/fips180-2withchangenotice.pdf.

[14] J. Guajardo, S. S. Kumar, G. J. Schrijen, and
P. Tuyls, ‘‘Physical unclonable functions and
public-key crypto for FPGA IP protection,’’
Proc. IEEE Int. Conf. Field-Programm. Logic
Appl., 2007, pp. 189–195.

[15] J. Guajardo, S. S. Kumar, G. J. Schrijen, and
P. Tuyls, ‘‘Brand and IP protection with
physical unclonable functions,’’ in Proc. IEEE
Int. Symp. Circuits Syst., 2008, pp. 3186–3189.

[16] T. Huffmire et al., ‘‘Moats and drawbridges:
An isolation primitive for reconfigurable
hardware based systems,’’ in Proc. IEEE Symp.
Security Privacy, 2007, pp. 281–295.

[17] Intrinsic-ID, ‘‘Quiddikey-Flex,’’ 2013. [On-
line]. Available: http://www.intrinsic-id.com/
products/quiddikey-flex.

[18] Intrinsic-ID, ‘‘Quiddicard protecting your
IP gainst overproduction, counterfeiting
and cloning,’’ Aug. 30, 2013. [Online].
Available: www.intrinsic-id.com/products/
quiddicard-.

[19] L. Jones, ‘‘Single event upset (SEU) detection
and correction using Virtex-4 devices,’’ Xilinx,
Appl. Note #714, 2007. [Online]. Available:
http://www.xilinx.com/bvdocs/appnotes/
xapp714.pdf.

[20] T. Kean, ‘‘Secure configuration of field
programmable gate arrays,’’ in Proc. IEEE
Annu. Symp. Field-Programm. Custom Comput.
Mach., 2001, pp. 259–260.

[21] Lattice, ‘‘FPGA design security issues:
Using Lattice FPGAs to achieve high
design security,’’ White Paper, 2007.

[22] Lattice, ‘‘Advanced security encryption
key programming guide for LatticeECP3,
LatticeECP2MS, LatticeECP2S devices,’’
Tech. Note TN1215, 2012.

[23] A. Lesea, S. Drimer, J. Fabula, C. Carmichael,
and P. Alfke, ‘‘The Rosetta experiment:
Atmospheric soft error rate testing in differing
technology FPGAs,’’ IEEE Trans. Device Mater.
Reliab., vol. 5, no. 3, pp. 317–328, Sep. 2005.

[24] M. McLean and J. Moore, ‘‘FPGA-based
single chip cryptographic solution,’’
Military Embedded Systems, 2007. [Online].
Available: http://www.mil-embedded.com/
pdfs/NSA.Mar07.pdf.

[25] Microsemi, ‘‘Igloo2 FPGAs revision 0,’’ 2013.
[Online]. Available: www.microsemi.com/
document-portal/doc_download/132042-
igloo2-fpga-datasheet.

[26] Microsemi, ‘‘Axcelerator family FPGAs,’’
2012. [Online]. Available: http://www.
microsemi.com/document-portal/doc_

download/130669-axcelerator-family-fpgas-
datasheet.

[27] Microsemi, ‘‘Implementation of security
in Microsemi Antifuse FPGAs,’’ Appl.
Note AC168, 2012.

[28] Microsemi, ‘‘Security architecture,’’ 2013.
[Online]. Available: http://www.microsemi.
com/products/fpga-soc/technology-solutions/
security/security-architecture.

[29] Microsemi, ‘‘SmartFusion2 SoC FPGA
reliability and security user’s guide,’’ 2013.

[30] A. Moradi, A. Barenghi, T. Kasper, and
C. Paar, ‘‘On the vulnerability of FPGA
bitstream encryption against power analysis
attacks: Extracting keys from Xilinx Virtex-II
FPGAs,’’ in Proc. ACM Conf. Comput. Commun.
Security, 2011, pp. 111–124.

[31] A. Moradi, M. Kasper, and C. Parr, ‘‘Black-box
side-channel attacks highlight the importance
of countermeasuresVAn analysis of the
Xilinx Virtex 4 and Virtex-5 bitstream
encryption mechanism,’’ in Proc. 12th
Conf. Topics Cryptol., 2012, DOI: 10.1007/
978-3-642-27954-6_1.

[32] A. Moradi, D. Oswald, C. Paar, and
P. Swierczynski, ‘‘Side channel attacks on the
bitstream encryption mechanism of Altera
Stratix II,’’ in Proc. ACM/SIGDA Int. Symp.
Field-Programm. Gate Arrays, 2013,
pp. 91–100.

[33] National Institute of Standards and
Technology (NIST), ‘‘Recommendation
for block cipher modes of operation,’’
Special Publ. 800-38A, 2001.

[34] M. Parlekar, ‘‘Authenticated encryption
in hardware,’’ M.S. thesis, Electr. Comput.
Eng. Dept., George Mason Univ., Fairfax, VA,
USA, 2005.

[35] E. Peterson, ‘‘Developing tamper resistant
designs with Xilinx Virtex-6 and 7 series
FPGAs,’’ Xilinx, Appl. Note XAPP1084, 2012.

[36] L. Sanders, ‘‘Secure boot of Zynq-7000
all-programmable SoC,’’ Xilinx, Appl.
Note XAPP 1175 (v1.0), 2013.

[37] B. Schneier, Applied Cryptography Second
Edition. New York, NY, USA: Wiley,
1996.

[38] S. Skorobogatov and C. Woods,
‘‘Breakthrough silicon scanning discovers
backdoor in military chip,’’ Cryptographic
Hardware and Embedded SystemsVCHES
2012, vol. 7428. Berlin, Germany:
Springer-Verlag, 2012, pp. 23–40.

[39] G. E. Suh and S. Devadas, ‘‘Physical
unclonable functions for device
authentication and secret key generation,’’ in
Proc. Design Autom. Conf., 2007, pp. 9–14.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

1264 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

[40] A. Telikepalli, ‘‘Is your design secure?’’ Xilinx,
2003. [Online]. Available: http://www.xilinx.
com/publications/archives/xcell/Xcell47.pdf.

[41] S. Trimberger, ‘‘Method and apparatus
for protecting proprietary configuration
data for programmable logic devices,’’
U.S. Patent 6 654 889, 2003.

[42] S. Trimberger, J. Moore, and W. Lu,
‘‘Authenticated encryption of FPGA
bitstreams,’’ in Proc. 19th ACM/SIGDA
Int. Symp. Field Programm. Gate Arrays,
2011, pp. 83–86.

[43] S. Trimberger, Field-Programmable Gate
Array Technology. Norwell, MA, USA:
Kluwer, 1994.

[44] S. Trimberger, ‘‘Trusted design in FPGAs,’’ in
Proc. Design Autom. Conf., 2007, pp. 5–8.

[45] S. Trimberger and J. Moore, ‘‘FPGA security:
From features to capabilities to trusted
systems,’’ in Proc. 51st Annu. Design Autom.
Conf., 2014, DOI: 10.1145/2593069.2602555.

[46] S. Trimberger, ‘‘Security in SRAM FPGAs,’’
IEEE Design Test Comput., vol. 24, no. 6,
p. 581, Nov./Dec. 2007.

[47] S. Trimberger, ‘‘Three ages of FPGAs,’’ in
FPGA20. Highlights of the International
Symposium on Field-Programmable Gate
Arrays, ACM, 2011, pp. 1–18.

[48] T. Tuan, T. Strader, and S. Trimberger,
‘‘Analysis of data remanence in a 90 nm
FPGA,’’ in Proc. IEEE Custom Integr. Circuits
Conf., 2007, pp. 93–96.

[49] T. Wollinger and C. Parr, ‘‘How secure
are FPGAs in cryptographic applications,’’
Field Programmable Logic and Application,

vol. 2778, P. Y. K. Cheung, G. A.
Constantinides, and J. T. de Sousa, Eds.
Berlin, Germany: Springer-Verlag, 2003,
pp. 91–100.

[50] Xilinx, ‘‘Virtex-4 FPGA configuration user
guide, v1.11,’’ UG071, 2009.

[51] Xilinx, ‘‘Virtex-6 FPGA Configuration
User Guide,’’ UG360, Jul. 30, 2010. [Online].
Available: http://www.xilinx.com/support/
documentation/user_guides/ug360.pdf.

[52] Xilinx, ‘‘Device reliability report, second
quarter 2013,’’ UG116, 2013.

[53] A. Zeineddini and J. Wesselkamper, ‘‘PRC/
EPRC: Data integrity and security controller
for partial reconfiguration,’’ Appl. Note
XAPP887, 2012.

ABOUT T HE AUTHO RS

Stephen M. Trimberger (Fellow, IEEE) received

the B.S. degree in engineering and applied science

from the California Institute of Technology,

Pasadena, CA, USA, in 1977, the M.S. degree in

information and computer science from the

University of California at Irvine, Irvine, CA, USA,

in 1979, and the Ph.D. degree in computer science

from the California Institute of Technology in 1983.

He was employed at VLSI Technology from

1982 to 1988. Since 1988 he has been at Xilinx, San

Jose, CA, holding a number of positions. He is currently a Xilinx Fellow,

heading the Circuits and Architectures group in Xilinx Research Labs in

San Jose, CA, USA. He is an author and editor of five books as well as

dozens of papers and journal articles. He is an inventor on more than 200

U.S. patents in the areas of integrated circuit (IC) design, field-

programmable gate array (FPGA) and application-specific integrated

circuit (ASIC) architecture, computer-aided engineering (CAE), 3-D die

stacking semiconductors, and cryptography.

Dr. Trimberger is a four-time winner of the Freeman Award, Xilinx’s

annual award for technical innovation. He is a Fellow of the Association

for Computing Machinery (ACM).

Jason J. Moore received the B.S. degree in

electrical engineering from New Mexico State

University, Las Cruces, NM, USA, in 1992.

He is currently a Director of Market Segments

Engineering at Xilinx, Albuquerque, NM, USA,

focused on security and safety architectures. Pre-

vious to his assignments at Xilinx, he was respon-

sible for the development of field-programmable

gate array (FPGA)-based communication security

equipment in a wide range of avionics and ground-

based platforms at the Motorola Government Group. He has been

awarded multiple patents on cryptographic design in addition to novel

approaches for logical and functional isolation within a single FPGA.

Mr. Moore is a two-time winner of the Freeman Award, Xilinx’s annual

award for technical innovation.

Trimberger and Moore: FPGA Security: Motivations, Features, and Applications

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1265

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

